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Colorado School 
of Mines 
 
Located in Golden, Colorado, USA 
10 miles West of Denver 

CSM sits in the foothills of the Rocky Mountains 

CSM has ~300 faculty and ~5600 students    
(~4200 undergrad and ~1400 grad) 
 
CSM is a public research institution devoted to 
engineering and applied science, especially: 

•  Earth 
•Energy 
•Environment 
 
 
 

CSM is a public research institution devoted to 
engineering and applied science, especially: 

•  Discovery and recovery of resources 
•  Conversion of resources to materials and energy 
•  Utilization in advanced processes and products 
•  Economic and social systems necessary to ensure   

 prudent and provident use of resources in a   
 sustainable global society 
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Sustainable Global Society 

CSM REALLY MEANS IT! AND WE BACK IT UP WITH 
PROGRAMS IN  
• Wind energy 
• Solar materials research 
• Alternate, reduced carbon fuel technologies (fuels cells, bio fuels) 
• Power electronics, transmission and distribution, and grid integration 

research 
• NSF ERC in urban water resources 
• Novel laboratories (e.g., wind tunnel + physical subsurface simulator) 
• Energy minor 
• Bio-related minors: biomedical, biomechanics, bio-environmental 
• Coursework in sustainable design 
• Humanitarian Engineering minor; Engineering by Doing program 

 
 

 

 
• Comment: Resilience, especially as 

related to infrastructure, is essential to 
a sustainable global society 

 
• Today: Explore resilience from the 

perspective of controlling dynamic 
networks 
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Synopsis -1 

• Many important systems can be modeled as  
– Collection or network of integrating agents or subsystems 
– Exchanging energy, material, or information   
– According to some protocol or physical laws 
– Subject to an                                                        

interconnection                                                             
topology  

 
 

 

Figure: from http://www.buffalowater.org/files/Schematic-2011.JPG. Used without permission. 
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Example: Natural Gas System 

Figure: from Figure 256 in “From Reservoir to Burner Tip: A Primer,” Curtis and Schwochwow, in Potential Supply of Natural Gas, 2008. Used without permission. 
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Synopsis -2 

• When such systems are governed by differential equations we call 
them a dynamic network 

•  Also called a cyber-physical system when there is  
– Tight integration of 
 Physical system dynamics  
 Sensors and actuators  
 Computing infrastructure 

– Multiple time and spatial scales 
– Multiple behavioral modalities 
– Context dependent interactions 

• Example: Intelligent vehicle-                                              
highway system; cities 
 

  

Figure: Intelligent Vehicle Highway Systems 
www.vehicleguidance.com 
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Example: Global Supply Chain 

B Wible et al. Science 2014;344:1100-1103 
Published by AAAS 

Port of Hong Kong  



Figure from J Mervis Science 2014;344:1104-1107 
Published by AAAS 

Logistics Today 



Figure from J Mervis Science 2014;344:1104-1107 
Published by AAAS 

Logistics Tomorrow 

Network Design 

Network Control 

Resilient Dynamic Network 



The Physical Internet 

 
Cyber-physical systems such as the 
“Physical Internet” enable: 

• Systematic modeling  
• Design 
• Optimization 
• Resilience 
• Sustainability 
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Synopsis -3 

• Physical processes interacting with other sources of energy, 
material, and information suggests the interpretation: 
– Complex infrastructure systems are                        

networks controlled by networks 
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Synopsis -4 

• In this talk:  
– Apply “networks controlled by networks” idea to resilience  

• Approach: 
– Model resilient control problem as disturbance or noise 

attenuation in dynamics consensus networks 
• Observation will be: 

– Network topology matters 
• Comment will be: future research needs to explore relationships 

between  
– Control-theoretic concepts  
– Graph-theoretic properties of networks 
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Outline 

Introduction 
- Systems as networks  

Consensus Paradigm 
- Dynamic Networks 
- Concepts and extensions 
- Consensus and resilience 
- Examples 

Resilient Dynamic Networks though 
Disturbance Attenuation 

- Designing network weights 
- Designing network controllers 
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Dynamic Networks 

• Network of “entities” 
– Communication infrastructure 
– Entity-level functionality 
– Implied global functionality 
– Not necessarily homogeneous 

• Nodes:  
– Entities could be sensors 
– Entities could be actors (actuators) 
– Entities could be people 

• Dynamic 
– Entities may or may not be mobile 
– Communication topology might be time-varying 
– Data actively and deliberately shared among entities 
– Decision-making and learning 
– Links between entities might be dynamic systems 
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Dynamic Networks as Models for … 

• Many systems of interest: 
– Cooperating robots 
– Buildings, cities 
– Power systems 
– Water distribution 
– Information networks 
– Socio-economic systems 
– …. many more …. 

 

• Need a framework for analysis and design of these networks 
– One useful paradigm is the consensus variable approach 
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Consensus: an Algorithmic Approach to 
Coordination and Control in Networks 

• The consensus variable paradigm is a 
generalization of potential field 
approaches and has connections to 
problems in: 
– Coupled-oscillator synchronization 
– Neural  networks  

• Also called agreement protocol 
• Related to gossip algorithms 
• Articulated in context of team theory in 

1960s 
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Consensus Variable Perspective 

• Assertion:  
– Multi-agent coordination requires that some information must 

be shared 
• The idea: 

–  Identify the essential information, call it the coordination  or 
consensus variable. 

–  Encode this variable in a distributed dynamical system and 
come to consensus about its value 

• Examples: 
–  Planning date and time and place of a meeting 
–  Frequency control in power grid 
–  Adaptive scheduling of mission timings 



COLORADO SCHOOL OF MINES 

Consensus Variables 

• Suppose we have N agents with a shared global consensus 
     variable 
• Each agent has a local value of the variable given as  
• Each agent updates their local value based on the values of the 

agents that they can communicate with 
 
 
 

     where       are gains and       defines the communication topology 
graph of the system of agents 

• Key result from literature: If the corresponding graph has a 
spanning tree then                 for all i 

ijk ijG

Difference with neighbors 
Change in value 
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Example: Single Consensus 
Variable 
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Laplacian Matrix 
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Extension 1 - Forced Consensus 

• Forced Consensus 
– Injecting an input into a node: 

 
 

– Then we use a feedback controller: 
𝑢𝑖 𝑡 = 𝑘𝑝(𝜉𝑠𝑠 − 𝜉𝑖) 

• Example: 
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Extension 2 – Multiple, Constrained 
Consensus 
• Often we will have multiple consensus variables in a given problem 

 
 
 
 
 
 
 
 

• It can be useful to enforce constraints between these variables, specifically, to 
have   

• Again we can give a feedback control strategy to achieve this type of 
constrained consensus between groups of agents 
 

ijji ∆+= ξξ
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Example – Multiple, Constrained 
Consensus 
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• Example: Flocking and Formation Flight 
• Consider a third-order consensus problem, applied to a formation 

control problem with five vehicles   
• One vehicle has acceleration setpoint input and is the leader 

 
 
 
 
 

Acceleration Input 

Enables formation 
control 

Extension 3 – Higher-Order Consensus 
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• The “leader node” sees the following acceleration input profile: 
 
 
 
 
 

Extension 3 – Higher-Order Consensus 
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• The resulting paths look like: 
 
 
 
 
 

Extension 3 – Higher-Order Consensus 
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• Science 15 August 2014: Vol. 345 no. 6198 pp. 795-799 
 
 
 
 
 

Consensus for Real -1: Harvard 1000-Robot 
Swarm 

http://www.seas.harvard.edu/sites 
/default/files/images/news/Image1_sq_0_op.jpg 

http://www.seas.harvard.edu/sites/default/fil
es/images/news/Image2_650.jpg 
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Consensus for Real -2: Radio Tethering in 
Subterranean Environments 

• Subways, mines, caves, 
underground buildings 

• Limited  
– Entrances/exits 
– Navigation 
– Limited ventilation 
– Communications 

• Challenging emergency 
management environment 

 – Assume no infrastructure 
– Radio relays may be necessary at/near junctions 
– Rescue workers must carry their own comms 
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MineSENTRY - Autonomous 
Mobile Radio Relays 

Underground Sensor Network 

Teleoperated Bobcat 

Autonomous Radio Node (AMR) 
   - Provides Communication Tether 
   - Uses CSM-developed UGV Autopilot  
       

Operator Control  
Unit 

(OCU)  

Mesh Radio System 
(Rajant Breadcrumb™) 
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Theoretical Approach 

• Wireless 1-D tethering 
– Not in physical coordinates 
– Rather, in radio signal strength (RSS) space 

• Goal is to maintain equal RSS between ARMs while the leader 
moves forward in the mine 

• Our approach uses the internal model principle to develop a 
higher-order (2nd) consensus algorithm: 
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Experimental Results 
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Consensus Networks and Resilience -1 

• Dynamic consensus networks give a reasonable paradigm for 
modeling systems that have 
– Storage and computation at nodes  
– Flows between edges and along edges 

• One possible way to see this is to consider the ideas from Jay 
Forrester’s (MIT) System Dynamics paradigm 
– Basically a “poor man’s control theory” 
– Envisioned all systems as having “stocks” and “flows” that 

are interconnected through positive and negative feedback 
 

Stock 
Inflow Outflow 

Information 
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• Stocks and flows and some other components can be assembled 
to build up complex systems models 

• These models can be simulated using tools such as STELLA 

Figure: From “How Small System Dynamics Models Can Help the Public Policy Process,” http://www.albany.edu/~gpr/SmallModels.pdf. Used without permission.  

Consensus Networks and Resilience -2 

Example: Public 
Policy Process 



COLORADO SCHOOL OF MINES 

• People have used these ideas to study resilience and 
sustainability. For example: 

 

Consensus Networks and Resilience -3 
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• Consensus paradigm provides an analytical tool for analysis of 
systems modeled using Forrester’s System Dynamics 

 
• Key idea is that it works for systems where 

 
change in storage ∝ ∑  (multipliers) x (flows in − flows out) 

 
• Below we will illustrate this for several systems: 

– Cooperating robots (discussed above) 
– Thermal systems (e.g., buildings) 
– Electric circuits (e.g., power systems) 

Consensus Networks and Resilience -4 











Dynamic Laplacian Matrix 
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Outline 

Introduction 
- Systems as networks  

Consensus Paradigm 
- Dynamic Networks 
- Concepts and extensions 
- Consensus and Resilience 
- Examples 

Resilient Dynamic Networks 
though Disturbance Attenuation 

- Designing network weights 
- Designing network controllers 
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Resilient Control as Disturbance 
Attenuation -1 

• Consider a consensus network that models some critical system 
• What could go wrong? 
 Cyber-attack 

corrupts 
signals; Cyber 
links are lost 

(robust 
control) 

Physical links are 
lost; Node 

performance is 
corrupted 

(fault-tolerant 
control) 
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Resilient Control as Disturbance 
Attenuation -2 

• The cyber-attack problem can be viewed as follows: 
 
 
 
 
 
 
 
 
 
 

 

Attack 
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Summary 

Introduction 
- Systems as networks  

Consensus Paradigm 
- Dynamic Networks 
- Concepts and extensions 
- Consensus and Resilience 
- Examples 

Resilient Dynamic Networks though 
Disturbance Attenuation 

- Designing network weights 
- Designing network controllers 
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What’s next? -1 

• Apply ideas from control theory in a network context 
– Controllability/observability/fault-tolerance 
– Note: New journal: 

… systems with interconnected components ... 



COLORADO SCHOOL OF MINES 

What’s next? -2 

• Apply ideas from graph theory and network science 
– Degree distributions, clustering, centrality, betweenness, 

communicability, … 
– E.g., betweenness centrality: the number of shortest paths 

from all vertices to all others that pass through that node 
 These two graphs will have different vulnerabilities  
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What’s next? -3 

• Apply ideas from ecology (http://www.resilience2014.org) 

Resilience, as the capacity to deal with change and 
continue to develop, relates to ecological dynamics and 
governance questions associated to specific resource 
systems (agro-ecosystems, fisheries, forests, rangelands, 
marine and freshwater ecosystems), and to global issues 
such as biodiversity conservation, urban growth, economic 
development, human security and well- being.  
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Thanks for your attention! 

Questions? 
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