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Geomagnetic Disturbances (GMDs) 

• GMDs have the potential to severely disrupt operations of 
the electric grid by inducing quasi-dc geomagnetically 
induced currents (GICs) in the high voltage grid 

• Until the last year or so power engineers had few tools to 
help them assess the impact of GMDs on their system 

• GMD assessment tools are now moving into the realm of 
power system planning and operations engineers 
– GIC impact is certainly still an area of research, but tools are here 

now and are continuing to move forward 

• Presentation presents application of such a tool and some 
recent research results 
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Geomagnetically Induced Currents (GICs) 
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The impact of the GMD 
induced electric field is 
modeled as dc voltages 
superimposed on the 
transmission lines.  The GIC 
calculation then just 
involves solving a linear dc 
circuits problem to 
determine the quasi-dc 
currents. 
 
DC currents cause 
transformer half-cycle 
saturation, causing increased 
reactive power consumption 



GMD Enhanced Power Analysis Software 

• By integrating GIC calculations directly within power flow 
or transient stability power engineers can readily see the 
impact of GICs on their systems, and consider mitigation 
options 

• GIC calculations use many of the existing model 
parameters such as line resistance.  But some non-
standard values are also needed; power engineers would 
be in the best position to provide these values, but all can 
be estimated when actual values are not available 
– Substation grounding resistance, transformer grounding 

configuration, transformer coil resistance, whether auto-
transformer, whether three-winding transformer, generator step-up 
transformer parameters 
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Four Bus Example 
5 

( ),3
150 volts 93.75 amps or 31.25 amps/phase

1 0.1 0.1 0.2 0.2GIC PhaseI = =
+ + + + Ω

The line and transformer resistance and current values are  
per phase.  Substation grounding values are total  
resistance.  Brown arrows show GIC flow.     



Goal: To Integrate GMD Assessment into 
Planning Process 

• Overall goal is to make GMD assessment a standard part 
of the power system planning process 
– Ignorance is not bliss 
– The amount of risk can be assessed, and appropriate plans, 

including operating procedures and/or blocking, can be developed 
– Initial plans may involve the installation of monitoring equipment at 

locations identified by studies as having high GMD potential 

• Tools need to meet the needs of power system planning 
and operations engineers 
– The tools should NOT require a PhD in Geophysics 
– There needs to be industry agreement on the appropriate input 

electric fields to study; this could involve multiple scenarios 
– As with all engineering studies, engineering judgment is needed to 

determine how much approximation is reasonable 
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GMD Assessment Software Evolution 

• Initial packages were stand alone, not integrated into 
commercial power flow or transient stability 

• In 2011 GMD assessment integrated into power flow 
– Uniform electric field assumption common 

• More recently sensitivity analysis has been included 
– Sensitivity of GICs to input electric field assumptions (nearby lines 

provide vast majority of a transformers GICs) 
– Sensitivity of GICs to assumed substation grounding resistance 

(results indicate the values can be quite sensitive!) 

• Much more detailed non-uniform electric fields are now 
being modeled 

• Calculations are now also integrated into transient stability 
for possible dynamic considerations  
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GIC G Matrix 

• With knowledge of the pertinent transmission system 
parameters and the GMD-induced line voltages, the quasi-
dc bus voltages and flows are found by solving a linear 
equation 
    

  I  = G V 
 

– The G matrix is similar to the Ybus except it is augmented to include 
substation neutrals, and it is just resistive values (conductances) 

– The current vector contains the Norton injections associated with 
the GMD-induced line voltages 

• Factoring the sparse G matrix and doing the 
forward/backward substitution takes about 1 second for the 
62,600 bus Eastern Interconnect Model  
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GIC Flows in Eastern Interconnect for a 
Uniform 2.5 V/Mile, North-South Field  
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Input Electric Field Considerations 

• The current vector depends upon the assumed electric 
field along each transmission line 

• With a uniform electric field determination of the 
transmission line’s GMD-induced voltage is path 
independent 
– Just requires geographic knowledge of the transmission line’s 

terminal substations 

• With non-uniform fields an exact calculation would be path 
dependent, but just a assuming a straight line path is 
probably sufficient (given all the other uncertainties!) 

• We need geographic scaling factors that depend on 
ground type and magnetic latitude 

• Different values for different scenarios would be fine 
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GMD Non-uniform Field Simulation 
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Color  
varies  
depending 
on the  
assumed 
electric 
field  
magnitude 



G Matrix Considerations 

• Data is needed at least for the study footprint and near 
neighbors 

• Transmission line resistance values are readily obtained 
from the power flow cases 
• DC resistance is quite close to ac values;  temperature dependence 

(0.4% per degree C) plays a role 

• Estimates of transformer winding resistance can be  
obtained from the power flow cases 
–  Usually whether they are auto-transformers can be determined 
– Whether device is a three winding transformer can usually be 

guessed (if not explicitly modeled) 
– Obviously actual coil winding resistance is best! 
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G Matrix Considerations, cont. 

• Recent research has indicated that the GICs can be quite 
sensitive to the assumed grounding resistance; hence 
measured values are recommended 

• The relative importance of a particular substation 
grounding resistance can be determined by comparing its 
value to the driving point resistance seen looking into the 
network at that location; these values can be computed 
quite quickly using sparse vector methods 
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Ground Resistivity Sensitivity of EI 
Substations with Largest GICs 
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Table source: U. Bui, T.J. Overbye, K. Shetye, H. Zhu, J. Weber, “Geomagnetically Induced Current Sensitivity to Assumed Substation  
Grounding Resistance,” Accepted for Presentation at 2013 North American Power Symposium, Manhattan, KS, Sept. 2013  

Higher script R 
values indicate 
more sensitivity;  
for more than  
one half the  
substation  
grounding  
resistances 
is most 
important value 



GIC Source Sensitivity Analysis 

• Sensitivities of the effective GIC for a transformer (or set 
of transformers) to the assumed transmission line GMD-
induced electric fields can be easily calculated 

• Sensitivities are derived by first writing the effective GIC 
for transformer r in matrix form 
 
 
where G is the GIC conductance matrix, ET are the input 
fields tangential to each line, B relates the voltages to 
the Norton current injections, and Cr relates the voltages 
to the effective current 

• G, B, Cr are sparse, hence quick computation 
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GIC Sensitivity Analysis, cont. 

• Sensitivities, telling which voltage inputs  contribute to the 
current, are determined just by differentiating the 
previous equation 
 
 
 

• Each entry k in ST,r tells how IEffective for transformer r 
would vary for a 1 V/km variation in the electric field 
tangential to the kth transmission line 
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Observations 

• Because of sparsity the computation is trivial 
• Simple scaling of entries in ST,r accounts for nonuniform, 

nontangential fields 
– Simple summation tells which lines actually contributed to the 

value 
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Four Bus Example 
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Transmission 
Lines↓ 

Bus 1 GSU Bus 4 GSU Bus 2-3 Auto 

Line 1 -- 2 35.02 5.87 -18.30 
Line 3 -- 4 5.87 40.25 36.21 

 

Transpose of ST
 vectors for the four bus system 



Observations, cont. 

• Sum of absolute values of entries in ST,r (i.e., the 1-
norm) tells the worst case uniform field current that 
could occur in transformer r  

• Define                          
 
 
to quantify difference between actual current and the 
worst case current (low for interior values, high for 
edge values) 
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Twenty Bus Test Case Example 

• Consider at XF 18-17 (upper left) and 20-5 (middle) 
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Twenty Bus Case Results 
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  T3, 18-17 
Eastward 

T3, 18-17 
Max 

T8, 20-5 
Eastward 

T8, 20-5 
Max 

Ieffective 31.55 48.09 13.07 92.1 
Line 2-3 5.82 5.84 -2.53 2.53 

Line 2-17 -4.50 5.84 1.95 2.54 
Line 15-4 0.62 0.65 8.07 8.55 
Line 17-16 11.64 12.01 -0.79 0.82 
Line 4-5,1 1.35 1.65 -11.38 13.95 
Line 4-5,2 1.35 1.65 -11.38 13.95 
Line 5-6 0.76 0.81 21.57 23.16 

Line 5-11 0.00 0.00 0.00 0.00 
Line 6-11 -0.05 0.25 -0.25 1.23 
Line 4-6 2.46 2.47 9.19 9.21 

Line 15-6,1 1.72 1.81 0.63 0.66 
Line 15-6,2 1.72 1.81 0.63 0.66 
Line 11-12 0.40 0.40 1.98 1.98 
Line 16-20 0.01 0.46 -0.06 6.03 
Line 17-20 8.27 12.45 -4.55 6.86 

 



Extended to Multiple Transformers 

• Analysis can be easily extended to multiple transformers 
by including their contributions in the C vector 
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Large Case Results 
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In the Eastern Interconnect 
example, usually very  
few lines contribute the  
GICs for each transformer 
 
For AEP’s 60 transformers 
with the largest  
effective currents about 
50% of the GICs are  
contributed by just 10  
lines (out of 57,000 in the 
case); 76% by just 20  
lines; 99% by 1% of 
the lines 

Conclusion is detailed electric 
field values are only needed for 
the contributing lines  



Switching Gears:  
Load Modeling Considerations 

• Whether a power 
system model 
experiences a static 
voltage collapse 
(maximum 
loadability) depends 
on the assumed 
load model 
– Constant power 

collapses quickest, 
whereas constant 
impedance is most 
robust  
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Dynamic Modeling Considerations 

• Dynamics are considered by included GICs in transient 
stability 

• With electric field rise times of more than a few seconds 
key dynamics are associated with the loads and the LTCs 
– Below figure shows transient stability results for a ramp of electric 

field from 0 to 20 V/km with a constant impedance load model; 
final voltage closely matches power flow results 
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Load and LTC Model Impacts 

• Voltage collapse occurs sooner when the load model 
includes induction motors, and sooner still when LTC 
delays are considered.  Results for 40 second ramp 
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CLOD Model, Fast LTC CLOD Model, 30 LTC Delay 
Contrast with power flow collapse of 10 to 20 V/km!  



Conclusions 

• GIC impact assessment has progressed to point at which 
it can be treated like other engineering problems with a 
cost/benefit assessment 
– There is lots of uncertainty, but we work in an industry with lots of 

uncertainty! 

• Getting started with GIC assessment can be relatively 
straightforward, consisting of doing GIC enhanced power 
flow studies 
– Can be used to determine mitigation strategies and locations for 

monitoring equipment 

• More advanced analysis techniques, including non-
uniform fields, sensitivity analysis and dynamic 
considerations are becoming available 
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Thank You! 
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