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Modeling Objective 

• Overall Objective:  Develop accurate prediction capability 

for transformer under GIC/E3 stress 

- Develop “accurate” electromagnetic core representation 

- Characterize primary-side impedance collapse 
> Affects power draw from utility (Reactive and Real) 

> Affects HV-side harmonics (THD and individuals vs. IEEE-519 Std.) 

- Characterize secondary-side voltage characteristics 
> Affects 60-Hz voltage sag (passed along to loads/facilities) 

> Affects LV-side harmonics (passed along to loads/facilities) 

 

• Modeling Code – ATP (Alternative Transients Program) 
- Trapezoidal Integration  “Fast”  Large Grid Sections can be modeled 

- Widely used to analyze power systems for transient response (lightning, etc.) 

- Work from previously vetted (in non-saturated regime) transformer models 
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ATP Built-in Models 
SATURA Model  

• 7-pt non-linear magnetizing characteristic 

- Must be fully defined/calculated by user (flux-current, Φ-I) 

• Linear loss processes 

• All electrical parameters must be inserted in Ω,H,etc. 

• Modeled as three “single-phase” cores wired together 

- No flux sharing 
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ATP Built-In Models: 
Hybrid Model 

• Topologically correct model developed by Mork, Gonzalez, et. Al. 

- Implementation of “flux sharing” 3 and 5-leg models 

• Parameter input at the per-unit (%) level rather than Ω,H, etc: 

- Automatic: Based on limited IEEE trend data 

- Manual: Specified as per-unit 

• Magnetic circuit fit to Frolich equation from (Voltage, Magnetizing I) 
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SATURA vs. Hybrid Models 
Comparison to Empirical Data 

• Topology of Hybrid model increased accuracy of voltage THD and 

individual harmonic predictions 

• Sag w/SATURA model already somewhat accurately predicted 

- To within 1% on 15% Vfund sag in 2011 Experiment Data (measured at substation) 

- To within the A/B/C diff. on 2% Sag in 2011 Experiment Data (measured at 138 kV) 
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SATURA vs. Hybrid Models 
Comparison to Empirical Data (Voltage Harmonic) 
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Parameter Sensitivities 
Within the Hybrid Model 
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Effects of Model X,R,X/R 
Saturation of MVA-Level Transmission Transformer 

• X, R, X/R:  Primary control of DC 

loop impedance of E3/GIC current 

- Parameter range: from nameplate 

and X/R trends published in IEEE 

C37.010-1979 
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Effects of Model X,R,X/R 
Saturation of MVA-Level Transmission Transformer 

• X/R has modest effect on strong harmonics 

- Not linear relationship 

- X/R from 9.3 to 14 to 21  

- 2nd Vharmonic from 24% to 31% to 31%   
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Effects of Model Zero Sequence Path 
Saturation of MVA-Level Transmission Transformer 
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• Zero-sequence pathway enabled is critical to match the data 

• Harmonic content relatively insensitive to |Zzero| 

- Total Z (Zpos+Zzero) dominated by Zpos term 
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Effects of Model Zero Sequence Path 
Saturation of MVA-Level Transmission Transformer 

• Collapse of Zprimary more accurate w/zero seq. path 
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Parameter Sensitivities 
Within the Hybrid Model 
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Model Hysteresis/Anhysteresis 
Saturation of MVA-Level Transmission Transformer 

• Hysteretic shape of M-4 steel material has no perceptible effect on 

secondary voltage sag or harmonics 

• Likely due to similarities of dΦ/dI (fluxꞌ/currentꞌ) for hysteretic/anhysteretic 
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Parameter Sensitivity Summary 

• ATP-based model methodology developed and compared against 

empirical data 

• Model evolved from SATURA to Hybrid based model as effort focused 

individual harmonic prediction 

• Hybrid Model to E3/GIC Prediction Sensitivities: 

- X, R, X/R:  Primary control DC loop impedance of E3/GIC current; no large effect on 

Vsag; moderate effect on strong Vharmonics 

- Imagnetizing,V% (Zero Sequence): Pathway important/values not 

- Imagnetizing,V% (Positive Sequence): Primary driver of harmonic content—describes 

transition into saturation and magnitude/shape of reactive current draw 

- Anhysteresis,Hysteresis: No effect on harmonics/sag  

• Sensitivities of source side still under investigation 

- Source-side Vsag dependent upon saturating transformer AND source model 
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