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ASCE REPORT CARD ON AMERICA'S INFRASTRUCTURE

ASCE’s Report Card for America’s Infrastructure [2013]

The average age of
the 84,000 dams in

| the country is 52

years old

By 2020, 70% of
the total dams in
the United States
will be over 50
years old



WHY INLAND WATERWAYS?

Over 200 lock chambers

Over 566 million tons of freight
(~51 million truck trips)

Over $152 billion equivalence of
goods

Low-cost and fuel-efficient
freight mode

LEGEMND

— 5hi-foot Locks
— Existing 1,200-foot Locks
=—Proposed 1,200-foot Locks

15-barge grain tow, hauling
approximately 22,500 tons of export
grain, exits Lock & Dam 13




AFTER A DISRUPTION

Recovery management
= Post-disaster strategies
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QUANTIFYING RESILIENCE

Cost/impact measures associated with a
disruptive event

Expected loss of service cost

Total network restoration cost

Interdependent impact of resilience

Importance measures
Resilience-based component
importance measure
Resilience worth




DIRECT COST

The loss of service cost is a function of the
severity of the disruptive event and the service
function for network component [

d
0 (ta) = 9(to) - Z¢l<to>x3

65

The total cost of restoration accounts for
potential parallel recovery activities

Ctotal(ej) — 2 HiCij
L



DIRECT COST

Network Restoration Cost

Loss of Service Cost
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INDIRECT COST - DYNAMIC INOPERABILITY MODEL

For n interdependent sectors

n X n matrix for
controlling recovery

Y
(t+1)=[1 —K{d-AY)]q(t) + K*c*(¢t),t =0,1,2, ...
A R

n X 1 vector of n X n matrix of n X 1 vector of
sector sector sector demand
inoperabilities interdependence perturbations

Model trajectory depends upon A*,K*, q(0), c*(t)

K* influences the rate at which balance in demand and supply
is restored



INTERDEPENDENT IMPACT OF RESILIENCE

To more accurately model resilience with the
dynamic interdependency model, we develop a

dynamic resilience matrix, K(t)
We more explicitly account for vulnerability and
recoverability from the resilience paradigm described

previously
K*(0)

A, (tle))

K*(t) =

The new resilience-based interdependency
model for economic impact is

xTq(t + 1) = xT[(1 - K*())q(®) + K*(t)A*q(1)]

9



NDENT IMPACT OF RESILIENCE
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PC The interdependency model allows for
—n an industry-specific analysis of the
trade-off between recovery strategies

Difference in inoperability

© = o « s oW [ L o
I | 0 [

L L L
10 20 30 40 50 60 70
Time to full network recovery

Economic losses across

| I SR | I SRR the six primary waterway
d=5, W1 d=5, W2 d=5, W3 industries (blue curve, left
vertical axis) and network
resilience (green curve,

. BT | . right vertical axis) over
] I | i I time for the three recovery
f} - : strategies and two

o ' S = disruptive scenarios
d=20, W1 d=20, W2 d=20, W3

10



RESILIENCE-BASED COMPONENT IMPORTANCE MEASURE

Network
performance
loss due to
disru.ptio.n of Time to full
link i network
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Maximum loss
among all the
links
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RESILIENCE WORTH

Time to total
Time to total network recovery
hetwork when component i
recovery is invulnerable
T —

p(xtIv]) " o(x(to)Iv/=0)

WH, (trle!) = _
TQD(x(to)Wi])

0 < Wi, (t-lel) <1
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DATA-DRIVEN APPROACH

4 R 4 _ A 4 A
Bayesian
Prior kernel Posterior
distribution model distribution
(prior  |B)| (binary |HWp| of the
knowledge, historical resilience
expertise) data, worth
attributes)
- J \_ J - J

Expected value of the posterior distribution

. — a
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Posterior probability distribution
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Posterior Curmulative Distribution

Posterior Cumulative Distribution

Posterior Cumulative Distribution

POSTERIOR DISTRIBUTION OF THE RESILIENCE WORTH
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END OF PRESENTATION

contact: hiba.baroud(@vanderbilt.edu

learn more (@ www.hibabaroud.com
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